Gauss-Jacobi-type quadrature rules for fractional directional integrals

نویسندگان

  • Guofei Pang
  • Wen Chen
  • K. Y. Sze
چکیده

Fractional directional integrals are the extensions of the Riemann-Liouville fractional integrals from oneto multi-dimensional spaces and play an important role in extending the fractional differentiation to diverse applications. In numerical evaluation of these integrals, the weakly singular kernels often fail the conventional quadrature rules such as Newton-Cotes and Gauss-Legendre rules. It is noted that these kernels after simple transforms can be taken as the Jacobi weight functions which are related to the weight factors of Gauss-Jacobi and Gauss-Jacobi-Lobatto rules. These rules can evaluate the fractional integrals at high accuracy. Comparisons with the three typical adaptive quadrature rules are presented to illustrate the efficacy of the Gauss-Jacobi-type rules in handling weakly singular kernels of different strengths. Potential applications of the proposed rules in formulating and benchmarking new numerical schemes for generalized fractional diffusion problems are briefly discussed in the final remarking section.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadrature rules for singular integrals on unbounded intervals

The importance of singular and hypersingular integral transforms, coming from their many applications, justifies some interest in their numerical approximation. The literature about the numerical evaluation of such integrals on bounded intervals is wide and quite satisfactory; instead only few papers deal with the numerical evaluation of such integral transforms on half-infinite intervals or on...

متن کامل

Exponential convergence of Gauss-Jacobi quadratures for singular integrals over high dimensional simplices

Galerkin discretizations of integral operators in R d require the evaluation of integrals R S (1) R S (2) f (x, y) dydx where S (1) , S (2) are d-dimensional simplices and f has a singularity at x = y. In [3] we constructed a family of hp-quadrature rules Q N with N function evaluations for a class of integrands f allowing for algebraic singularities at x = y, possibly non-integrable with respe...

متن کامل

Exponential Convergence of Gauss-Jacobi Quadratures for Singular Integrals over Simplices in Arbitrary Dimension

It is advisable to refer to the publisher's version if you intend to cite from the work. Abstract. Galerkin discretizations of integral operators in R d require the evaluation of integrals S (1) S (2) f (x, y) dydx,w h e r eS (1) ,S (2) are d-dimensional simplices and f has a singularity at x = y. In [A. Chernov, T. von Petersdorff, and C. Schwab, M2A NM a t h .M o d e l .N u m e r .A n a l. , ...

متن کامل

Gauss Legendre-Gauss Jacobi quadrature rules over a tetrahedral region

This paper presents a Gaussian quadrature method for the evaluation of the triple integral ( , , ) T I f x y z d xd yd z = ∫∫∫ , where ) , , ( z y x f is an analytic function in , , x y z and T refers to the standard tetrahedral region:{( , , ) 0 , , 1, 1} x y z x y z x y z ≤ ≤ + + ≤ in three space( , , ). x y z Mathematical transformation from ( , , ) x y z space to ( , , ) u v w space maps th...

متن کامل

Numerical quadrature for high-dimensional singular integrals over parallelotopes

We introduce and analyze a family of algorithms for an efficient numerical approximation of integrals of the form I = ∫ C(1) ∫ C(2) F (x, y, y−x)dydx where C, C are d-dimensional parallelotopes (i.e. affine images of d-hypercubes) and F has a singularity at y − x = 0. Such integrals appear in Galerkin discretization of integral operators in R. We construct a family of quadrature rules QN with N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2013